Kriging prediction for manifold-valued random fields
نویسندگان
چکیده
منابع مشابه
Random Projection-Based Anderson-Darling Test for Random Fields
In this paper, we present the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) goodness of fit statistics for stationary and non-stationary random fields. Namely, we adopt an easy-to-apply method based on a random projection of a Hilbert-valued random field onto the real line R, and then, applying the well-known AD and KS goodness of fit tests. We conclude this paper by studying the behavior o...
متن کاملEfficient prediction designs for random fields
For estimation and predictions of random fields, it is increasingly acknowledged that the kriging variance may be a poor representative of true uncertainty. Experimental designs based on more elaborate criteria that are appropriate for empirical kriging (EK) are then often non-space-filling and very costly to determine. In this paper, we investigate the possibility of using a compound criterion...
متن کاملConditional Random Fields for Transmembrane Helix Prediction
It is estimated that 20% of genes in the human genome code for integral membrane proteins(IMPs) and some estimates are much higher. IMPs control a broad range of events essential to the proper functioning of cells, tissues and organisms. IMPs include the most common targets of clinically useful drugs, such as the G protein coupled receptors (GPCR), the target for more than 50% of prescription d...
متن کاملManifold-valued Dirichlet Processes
Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined locally for most cases - this makes it hard to design parametric models globally on smooth manifolds. Thus, most (manifold specific) parametric m...
متن کاملVector-valued Manifold Regularization
We consider the general problem of learning an unknown functional dependency, f : X !→ Y, between a structured input space X and a structured output space Y, from labeled and unlabeled examples. We formulate this problem in terms of data-dependent regularization in Vector-valued Reproducing Kernel Hilbert Spaces (Micchelli & Pontil, 2005) which elegantly extend familiar scalarvalued kernel meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2016
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2015.12.006